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A Clearer View of Tomorrow’s Haze
Improvements in Air Quality Forecasting 

quality forecasts is important, as is how far in 
advance they can be supplied. If you are sensitive
to air pollution, you may not want to plan an activity
that will be curtailed (perhaps catastrophically so)
due to unexpectedly poor air quality. Further, air
quality managers rely on forecasts to potentially 

While most of us are quite used to seeing, and 
relying upon, detailed weather forecasts many days
in advance, people who are sensitive to air pollution
(e.g., asthmatics) and air quality managers likewise
plan their activities depending on air quality fore-
casts. As with weather forecasts, the accuracy of air

The clearer picture satellite data provide makes it much
more feasible to accurately forecast future air quality.
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reduce emissions (e.g., “Spare the Air” alerts, http://
sparetheair.org/) or alert the public to potentially
harmful air quality, but they do not want to take
potentially costly actions unnecessarily.

In response to the increasing demand, air quality
forecasts are available, both from local agencies 
as well as nationally in many countries, and their
accuracy and abilities are improving. Most recent
forecasting systems have concentrated on fore-
casting either ozone (O3) or particulate matter (PM, 
including PM2.5, which is PM whose particles are
less than 2.5 μm in diameter), criteria pollutants of
widespread concern, though air quality forecasting
systems have been developed for other pollutants.
Advancing technologies are allowing forecasters to
provide more accurate estimates of air quality days
in advance. Of particular interest is the integrated
use of advanced air quality models and satellite 
observations to provide air quality information and
forecasts where the lack of ground-based observa-
tions hindered past efforts. The much clearer picture
that satellite data provide about pollution (both 
pollutant concentrations and emissions) “right now”
makes it much more feasible to accurately forecast
future air quality.

Air Quality Forecasts
Probably the most widely known and utilized fore-
casts are those given by AIRNow (http://www.airnow.
gov). AIRNow reports local forecasts made in about
300 U.S. cities. How the individual city AIRNow
forecasts are done, and who does them, can differ,
relying on trained forecasters with local expertise
who can use a wide variety of methods, as de-
scribed below. One of the primary pieces of infor-
mation available to the local experts is the NOAA
National Air Quality Forecasting Capability (NAQFC)
forecasts for the continental United States,1 which
can be supplemented by other forecast methods
and expert assessment. NAQFC forecasts are 
derived from an air quality modeling system similar
to those used to develop state implementation plans,

Figure 1. NAQFC and AIRNow Forecasts for August 30, 2013. (a) AIRNow AQI; (b) NAQFC O3; and (c) NAQFC PM.
Forecast O3 and PM concentrations are converted to the color scale associated with the health-informative AQI: (0–50 green; 51–100 yellow; 101–150 orange; and 151-200 red). 
The color-coded circles in the NAQFC forecast maps show the corresponding monitored values inserted afterward for evaluation purposes.
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The NOAA NAQFC provides what is probably the
most widely utilized CTM-based forecast in the
United States. This system takes advantage of
using the U.S. National Weather Service meteoro-
logical predictions6 as input to CMAQ. Europe 
employs the European Centre for Medium-Range
Weather Forecasts (ECMWF) weather forecasting
model to drive their Copernicus forecasting system,
using a global model to provide boundary condi-
tions to regional models.7 Other air quality model-
based forecasting systems include the “Hi-Res”
system (using CMAQ down to a 4-km horizontal
resolution over the Southeast United States),8

Airpact (4-km resolution for the Northwest United
States; http://lar.wsu.edu/airpact), and the BAMS
MAQSIP-RT system.9 While these forecasting 
systems largely began by providing O3 forecasts,
there is a growing trend toward providing PM2.5

forecasts as well.

A major advantage of model-based systems is that
they provide predicted air quality over the complete
domain and map out where pollutant hotspots will
likely occur. This is important when conducting
field experiments to plan when and where to sample
(e.g., when planning aircraft sampling to capture
plumes from cities and major sources).10,11 Model-
based forecasts are also used for cases where there

Figure 2. Iowa City Landfill
Fire Air Quality Forecasting
System.
The system is based on AERMOD,

improvised to predict local impacts

of the 2012 Iowa City Landfill fire 

at 100 m resolution over the Iowa

City/Coralville metropolitan area.

Plume color-coded by NAAQS for

particulates exceeded due to the fire 

during the two-week event: none

(yellow), annual PM2.5 (orange), 

24-hr PM2.5 (red), and 24-hr PM10

(dark red). Grey concentric circles 

indicate 1-, 2-, and 4-mile buffers

from the fire.

except that they are operated in a forecast mode
(see Figure 1). As discussed below, the NAQFC,
like many advanced systems, is benefiting from 
improving computational resources and greater and
more rapid data availability, particularly from space.

Methods
Air quality forecasting can be based on empirical/
statistical or air quality model-based (or simply
“model-based”) methods, or combinations of more
than one method (ensembles). Empirical methods
are based upon finding relationships (typically 
historical) between air quality and other factors 
relevant to the forecast location. Model-based
methods use meteorological and air quality models.

Empirical
Empirical (or statistical) models are based upon
past trends. They range in complexity from per-
sistence to multivariate methods (including cluster
analysis, classification and regression tree, regres-
sion and neural networks).2 Persistence simply says
that the tomorrow’s air quality is the same as
today’s. Regression analysis is based on deriving an
equation relating tomorrow’s O3 or PM to the 
current concentration, as well as other variables,
such as forecast meteorology.3 One of their main
advantages is, once constructed, they are readily
applied with low computational expense.

Model-Based
Air quality models are taking a growing role in air
quality forecasting. Like their meteorological model
cousins, their capabilities are growing as they 
become more comprehensive with greater fidelity
to atmospheric processes, and as the rapid increase
in computational resources enables them to improve
their resolution and their ability to forecast further
in to the future. Air quality model-based systems
generally use forecast meteorology and historic
emission estimates to provide forecasts. Such 
systems are based on dispersion models (like 
AERMOD4) for local forecasts of primary pollutants
(e.g., soot from fires) and chemical transport models
(CTMs) such as the Community Multiscale Air 
Quality (CMAQ) model5 for regional forecasts of
chemically-reacting pollutants such as O3 and PM.
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are insufficient historical data to develop an accurate
empirical system (e.g., when forecasting the impacts
of fires, either planned or unplanned.)12 Such fore-
casting systems can be developed rapidly in response
to emergency situations. In 2012, when the Iowa
City landfill caught fire with the liner of 1.5 millions
shredded tires generating a thick toxic plume that
raised immediate health concerns, a forecasting
system was rapidly applied to forecast the plume
impacts (see Figure 2), using AERMOD dispersion
modeling driven by a weather forecast model and
assimilated MODIS cloud properties.

Ensemble
Most of us are quite used to seeing forecasts of
hurricane paths where different tracks calculated
by different models are shown. The calculated
tracks diverge with time, providing an “ensemble”
estimate of the path, with a range of possibilities,
plus a best estimate. The ensemble is not just a 
regular average because modelers know from 
experience some models do better than others.
The same is done in air quality forecasting (and for
weather forecasts as well). Results from multiple
models are combined, with increased weight given
to approaches that are found to be most accurate
for that type of event (i.e., one method might be
better for high pollutant days, another for low pol-
lutant days). For example, the GSFC/PSU-ERM
(Ensemble Research Model) uses forecast parameters
that are sampled, combined and “trained” by using

observations in near-real time.11 The ECMWF-
Copernicus system uses an ensemble of seven 
regional CTMs.7

Expert
Any one, or more, of the methods discussed above
can be used to inform one or more experts that
then provide a forecast based on the information
provided, but adding human interpretation (often
based upon years of involvement and knowledge
of pollutant dynamics in a specific location, as well
as knowledge of the strengths and weakness of
other forecasting methods). As an example, the
PM and O3 forecasts developed for cities in Georgia
by the Georgia Environmental Protection Division
(EPD) use an expert panel approach. This effort
began in 1996 for the Atlanta Olympics, and 
involved a model-based system and empirical
methods to inform an expert team that links 
together on a daily basis to develop a final forecast
by consensus.8

Forecast System Performance
The utility of air quality forecasts is highly depend-
ent upon their accuracy. For the typical systems 
designed to provide routine O3, and more 
recently PM2.5, forecasts, the results are solid,
showing that while there are still improvements to
be made, reasonably accurate information can be
provided to air quality planners and the public. The
Hi-Res system7 provides both PM and O3 forecasts,

Figure 3. Performance of
Model and Expert Consensus
Approaches.
(a) HiRes modeled daily maximum

8-hr O3 forecasts for the 2010

summer season compared to the 

(b) EPD expert analysis consensus.

The (c) forecast bias frequency

plots for the HiRes and expert sys-

tems show similar distributions. The

mean normalized bias (MNB) and

mean normalized error (MNE) for

the model forecast were 14% and

18%, respectively, compared to 9%

and 17% for the consensus. Model-

ing guidelines suggest that having

an MNB and MNE of 20% and 35%

are sufficient when simulating past

periods, showing the forecasts now

meet guidelines for conducting 

historic simulations.
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and is a primary component of the Georgia EPD
expert-analysis based forecast. The performance of
the Hi-Res O3 forecast and the expert team con-
sensus are close (see Figure 3).

Looking Forward
While forecasting systems already provide credible
forecasts days in advance, their ability to make 
accurate extended range forecasts is being en-
hanced by the NASA Air Quality Applied Sciences
Team (AQAST) addressing current weaknesses.
One key to making an accurate forecast, be it for
tomorrow or three days from now, is having an
accurate representation of today’s air quality, not
only locally, but wherever the air masses come
from. However, it is unlikely that there are monitors
at those locations (most air masses come from lay-
ers well above the surface where monitors don’t
exist at all). AQAST teams have demonstrated the
use of satellite data to provide better spatial and
temporal information to improve forecast accu-
racy. The ECMWF system uses satellite observa-
tions in the global model.

Another step forward addresses a second weakness:
current model-based forecast systems use historic
emissions inventories that are not fully up to date
nor capture shorter term emission trends. Using
ground- and satellite-based measurements, it is
possible to dynamically update emission invento-
ries using chemical data assimilation.13 This can be
particularly important for sources that can vary 
dramatically, such as biogenic emissions, biomass
burning (e.g., wildfires, prescribed burns and home
heating), and dust.

Forecast energy demand can also be used to fore-
cast related emissions,14 which can be particularly
important when peaking units, that have higher
emissions, are used on hot summer days. The ability
to forecast how specific sources (say, cars or a spe-
cific facility) will impact O3 and PM nationally is
being explored to help target controls. Improving
forecast accuracy and increased forecast system 
capabilities will become even more important if air
quality standards are tightened as more areas will
seek to use this information to more effectively 
improve air quality. em
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