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Exploring the relationship between ambient temperature, energy demand, and electric 

generating unit point source emissions and potential techniques for incorporating real-time

information on the modulating effects of these variables using the Mid-Atlantic/Northeast 

Visibility Union region as an example.

The operation of air quality forecast models
(AQFMs) based on coupling a numerical weather
prediction (NWP) model to an emissions processor
and a chemical transport model (CTM) are now
common within the United States.1-8 Health pro-
fessionals and air quality managers utilize these
forecasts to alert susceptible populations and the
public at large of poor air quality conditions and
recommended actions to minimize exposures. In
addition, air quality forecasts have the potential of
guiding emission interventions designed to miti-
gate episodic events and exceedances of National
Ambient Air Quality Standards (NAAQS).

While the NWP component incorporates a large
amount of real-time information in the form of ini-
tial conditions and analysis fields, the emissions
processor often relies on simplifying assumptions
about the magnitude and temporal-spatial varia-
tion of emissions. Emissions of nitrogen oxides
(NOx) and sulfur dioxide (SO2) from major point
sources are directly measured, tracked, and
archived via the U.S. Environmental 

Protection Agency’s (EPA) continuous emissions
monitoring (CEM) network in support of the Clean
Air Markets Division for emissions cap-and-trade
programs (see www. epa.gov/captrade). Unfortu-
nately, it is not feasible to incorporate these emis-
sion measurements in real-time into AQFMs.

The development of an approach to enhance short-
term emissions estimates is expected to improve
the overall performance of AQFMs and, specifically,
the performance associated with episodic events.
The inherent relationships between weather fluctu-
ations, electricity demand, emissions, and air quality
are not currently represented in the emissions 
processing module of AQFMs.

Enhanced Emissions Estimates
The emissions model applied in AQFMs typically
derives emissions from annual totals of emitted
species by source category that are allocated
monthly and then hourly based on averaged 
temporal profiles. Some source categories, such as
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On days of high energy demand, additional gen-
erators are brought online for power generation.
These units are referred to as “peaking units” and
typically operate less than 15% of the time during
the year.10 Figure 3 shows the NOx emissions from
peaking units in the MANE-VU region from May
to September 2007. It illustrates the significant con-
tribution peaking unit emissions can have on some
days. It should be noted that, depending on federal
and state reporting requirements, not all peaking
units may be equipped with CEM and, therefore,
cannot be considered in this analysis.

Preliminary air quality modeling studies indicate
that time periods when the actual emissions were
larger than the average emissions (i.e., positive 
difference) usually coincided with days leading to
high ozone (O3) concentrations.11 The impact of
differences in point source NOx emissions between
the two scenarios on O3 predictions varied by 
location, with the largest changes at the grid cells
adjacent to the affected point sources. The maximum
difference in 1-hr or 8-hr daily maximum O3 was
typically greater than 4 parts per billion (ppb)
around the Ohio River valley, and less than 2.5 ppb
in general. Differences as large as 8–10 ppb were
noted at selected monitor locations in the MANE-
VU region, illustrating the need for refined emissions
in air quality modeling. In the following section, we
present an example approach of incorporating the
relationships between energy demand and emis-
sions into AQFMs.

Figure 1. Actual daily and
average EGU NOx emissions
in the MANE-VU region.

electric generating units (EGUs) exhibit significant
daily variations in emissions as compared to their
means, especially during periods of peak electrical
power demand. Point source emissions are meas-
ured and archived as part of EPA’s network of
CEMs. The archived hourly averaged data are typ-
ically available within a year of collection and are
also used to refine emissions inventories for mod-
eling in State Implementation Plans.

The variation in EGU emissions can be observed
by comparing their actual and average hourly
emissions, where “actual” refers to measured
hourly emissions from CEMs for EGUs on a unit-
by-unit basis and “average” refers to the hourly
emissions derived from annual emission totals
using averaged temporal profiles (i.e., monthly,
daily, and hourly profile) based on the actual 2007
CEM data on a state-by-state basis.9

Figure 1 shows the time series of daily emissions
for the actual and average NOx emissions in
tons/day during summer of 2007 in the Mid-
Atlantic/Northeast Visibility Union (MANE-VU) 
region. The average emissions show the monthly
and weekday–weekend patterns used in their allo-
cation of the annual emissions; Figure 2 shows the
extent to which the actual and average NOx emis-
sions differ on a daily basis. Differences in EGU
emissions typically occur on days of high energy
demand which is associated with high ambient
temperatures.
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Energy Demand Forecasts
Regional independent system operators (ISOs) per-
form daily energy forecasts as part of their mission
to ensure efficient generation and flow of power to
satisfy energy demand and administer electricity
markets. These forecasts are typically available 
online. ISOs in operation within the eastern United
States include the New York ISO (NYISO),12 the
New England ISO,13 the Midwest ISO,14 the PJM
Interconnection,15 and the Southeastern Electric 

Reliability Council.16 The availability of real-time 
energy load forecasts in principle provides an 
opportunity to enhance real-time EGU emissions
estimates for AQFMs.

For example, a comparison of 2007 CEM NOx
emissions and NYISO forecast energy load data
shown in Figure 4 indicates a robust correlation 
between these variables. In addition, a comparison
of actual and forecast energy load data from this

Figure 2. Difference in actual
daily and average EGU NOx
emissions in the MANE-VU
region.

Figure 3. NOx emissions
from “peaking units” in
the MANE-VU region
from May to 
September 2007.
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same period (not shown) reports a correlation 
coefficient of R2 = 0.954, indicating that load fore-
casts provide an opportunity to improve daily EGU
emission estimates.

Incorporating emissions from peaking units on a
real-time basis requires taking into account the 
relationship of between meteorology, energy 
demand, and EGU unit operation. The dominant
meteorological parameter affecting the energy 
demand forecast is temperature. 

Energy Load-Adjusted EGU 
Emissions Estimates
Historical power load data from the NYISO
archive12 and temperature observations data from
the research data archive17 at the National Center
for Atmospheric Research have been analyzed for
statistical relationships between daily power load
and average temperature in NY State.

Figure 5 shows a quadratic relationship between
ozone season temperature data (May–September)
from 2007 to 2009 and the actual power load for
the NYISO region aggregated over NY State. 
The regression model is: power load (MW) =
288.6112x2 - 2.9463E+4x + 1.1487E+6 Where,
x = average daily temperature (which ranged from
45 to 81oF) and R2 = 0.7554.

A comparison between the model-predicted power
load using the above relationship and the actual

power load for 2010 is shown in Figure 6 with an R2

of 0.8039. A similar comparison for 2011 (not
shown) had an R2 of 0.8113. Since the results 
indicate reasonable performance of the regression
model, the correlations can be employed to sup-
port a better forecast. As the range of daily average
temperatures during 2007 to 2009 for the model
development was up to 81 °F, predictions of power
load at temperatures above 81 °F suggest possible
over prediction and the potentially greater influ-
ence of EGU peaking units.

Although energy load is distributed across ISO 
regions and across states, energy use within a 
region does not necessary reflect where the power
is generated and thus where emissions occur. If a
significant portion of the electric generation to
meet load demand occurs outside of the aggre-
gated ISO domains, the relationship between fore-
casted load and EGU emissions will be more
uncertain. In addition, EGU emissions will vary over
the years due to emission controls and changes in
electric generation capacity and load demand; the
latter very likely affecting the operating frequency
of peaking units.

Methodologies for Incorporating
Real-Rime EGU Emissions Estimates
in AQFMs
Current analyses indicate that two methodologies
look feasible for incorporating real-time EGU 
emissions estimates in AQFMs. The first approach

Figure 4. NYISO forecasted
energy demand and actual
daily CEM EGU NOx
emissions in the MANE-VU
region.
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The second approach draws from the relationship
between temperature–energy load and EGU emis-
sions and is more indirect, but also does not rely on
the ISOs real-time energy load forecasts. In this
case, forecasted temperatures used to process
other emission components in the SMOKE emissions
model will be applied to the statistical relationship
between previous years’ daily average tempera-
tures and actual energy load data by state. As tem-

Figure 5. Regression model
between NYISO actual
power load (MW) and NY
state wide daily average
temperature (°F) developed
using ozone season data
(May–September) from
2007 to 2009.

Figure 6. Prediction of
2010 power load with
the regression model 
vs. 2010 NYISO 
actual power load (MW).

considers aggregating (by state) the hourly energy
load forecast data (day 2) from the ISOs for pre-
processing by the Sparse Matrix Operator Kernel
Emissions (SMOKE) processor.18 The SMOKE 
preprocessing will involve incremental adjustments
of EGU unit emissions at the state level and on
daily average basis, reflecting the statistical rela-
tionship between previous years’ energy load and
emissions data.
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perature has been shown to be a reasonable sur-
rogate for energy load, using a direct relationship
between temperature and EGU emissions is also
feasible. In either case, similar procedures for the
SMOKE preprocessing of the ISO energy load in
relation to emissions would be followed.

Future Challenges and Outlook
AQFMs are being used by air quality managers
and health officials to issue air quality advisories.
Improving the accuracy of air quality forecasts will
translate into providing more precise warnings to
the public. In this article, we presented an example
of possible approaches to refine the characteriza-
tion of emissions from power plants in AQFMs. We
explored relationships between ambient temperature,
energy demand and EGU point source emissions
and suggested methodologies for applying these
relationships to enhance real-time EGU emissions
estimates for use in AQFMs. However, there are
some limitations.

While the relationships presented here are robust,
they were developed based on aggregated emis-
sions sources in NY State, and as such, may be
best suited to improve regional-scale predictions.

Developing unit-specific relationships will be much
more challenging because load forecasts are not

available at that level, and economic and opera-
tional constraints likely are at least as important as
meteorology in determining which unit runs on
which day at which level.

Finally, depending on federal and state reporting
rules, some of the peaking units with relatively
small annual emissions may not be required to
have CEM. Therefore, their annual total emissions
are currently included in the miscellaneous point
source category inventory and no further informa-
tion on their temporal variation is readily available.
Getting a better representation of their temporal
variability may be important for finer scale appli-
cations, but is a challenge that may need to be 
addressed in the future.

The potential of an air quality forecast system is its
possible utility as a dynamic air quality manage-
ment tool that can provide information on likely
emission intervention strategies that can avoid air
quality exceedances. Improving the accuracy of the
model predictions through refinements such as
that discussed in this article is an important step 
toward achieving that goal. em
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