Exploring the relationship between ambient temperature, energy demand, and electric generating unit point source emissions and potential techniques for incorporating real-time information on the modulating effects of these variables using the Mid-Atlantic/Northeast Visibility Union region as an example.

The operation of air quality forecast models (AQFMs) based on coupling a numerical weather prediction (NWP) model to an emissions processor and a chemical transport model (CTM) are now common within the United States.1-8 Health professionals and air quality managers utilize these forecasts to alert susceptible populations and the public at large of poor air quality conditions and recommended actions to minimize exposures. In addition, air quality forecasts have the potential of guiding emission interventions designed to mitigate episodic events and exceedances of National Ambient Air Quality Standards (NAAQS).

While the NWP component incorporates a large amount of real-time information in the form of initial conditions and analysis fields, the emissions processor often relies on simplifying assumptions about the magnitude and temporal-spatial variation of emissions. Emissions of nitrogen oxides (NO\textsubscript{x}) and sulfur dioxide (SO\textsubscript{2}) from major point sources are directly measured, tracked, and archived via the U.S. Environmental Protection Agency’s (EPA) continuous emissions monitoring (CEM) network in support of the Clean Air Markets Division for emissions cap-and-trade programs (see www.epa.gov/captrade). Unfortunately, it is not feasible to incorporate these emission measurements in real-time into AQFMs.

The development of an approach to enhance short-term emissions estimates is expected to improve the overall performance of AQFMs and, specifically, the performance associated with episodic events. The inherent relationships between weather fluctuations, electricity demand, emissions, and air quality are not currently represented in the emissions processing module of AQFMs.

Enhanced Emissions Estimates

The emissions model applied in AQFMs typically derives emissions from annual totals of emitted species by source category that are allocated monthly and then hourly based on averaged temporal profiles. Some source categories, such as...
electric generating units (EGUs) exhibit significant daily variations in emissions as compared to their means, especially during periods of peak electrical power demand. Point source emissions are measured and archived as part of EPA’s network of CEMs. The archived hourly averaged data are typically available within a year of collection and are also used to refine emissions inventories for modeling in State Implementation Plans.

The variation in EGU emissions can be observed by comparing their actual and average hourly emissions, where “actual” refers to measured hourly emissions from CEMs for EGUs on a unit-by-unit basis and “average” refers to the hourly emissions derived from annual emission totals using averaged temporal profiles (i.e., monthly, daily, and hourly profile) based on the actual 2007 CEM data on a state-by-state basis.

Figure 1 shows the time series of daily emissions for the actual and average NOx emissions in tons/day during summer of 2007 in the Mid-Atlantic/Northeast Visibility Union (MANE-VU) region. The average emissions show the monthly and weekday–weekend patterns used in their allocation of the annual emissions; Figure 2 shows the extent to which the actual and average NOx emissions differ on a daily basis. Differences in EGU emissions typically occur on days of high energy demand which is associated with high ambient temperatures.

On days of high energy demand, additional generators are brought online for power generation. These units are referred to as “peaking units” and typically operate less than 15% of the time during the year. Figure 3 shows the NOx emissions from peaking units in the MANE-VU region from May to September 2007. It illustrates the significant contribution peaking unit emissions can have on some days. It should be noted that, depending on federal and state reporting requirements, not all peaking units may be equipped with CEM and, therefore, cannot be considered in this analysis.

Preliminary air quality modeling studies indicate that time periods when the actual emissions were larger than the average emissions (i.e., positive difference) usually coincided with days leading to high ozone (O3) concentrations. The impact of differences in point source NOx emissions between the two scenarios on O3 predictions varied by location, with the largest changes at the grid cells adjacent to the affected point sources. The maximum difference in 1-hr or 8-hr daily maximum O3 was typically greater than 4 parts per billion (ppb) around the Ohio River valley, and less than 2.5 ppb in general. Differences as large as 8–10 ppb were noted at selected monitor locations in the MANE-VU region, illustrating the need for refined emissions in air quality modeling. In the following section, we present an example approach of incorporating the relationships between energy demand and emissions into AQFMs.

Figure 1. Actual daily and average EGU NOx emissions in the MANE-VU region.
Energy Demand Forecasts
Regional independent system operators (ISOs) perform daily energy forecasts as part of their mission to ensure efficient generation and flow of power to satisfy energy demand and administer electricity markets. These forecasts are typically available online. ISOs in operation within the eastern United States include the New York ISO (NYISO), the New England ISO, the Midwest ISO, the PJM Interconnection, and the Southeastern Electric Reliability Council. The availability of real-time energy load forecasts in principle provides an opportunity to enhance real-time EGU emissions estimates for AQFMs.

For example, a comparison of 2007 CEM NOx emissions and NYISO forecast energy load data shown in Figure 4 indicates a robust correlation between these variables. In addition, a comparison of actual and forecast energy load data from this
same period (not shown) reports a correlation coefficient of $R^2 = 0.954$, indicating that load forecasts provide an opportunity to improve daily EGU emission estimates.

Incorporating emissions from peaking units on a real-time basis requires taking into account the relationship of between meteorology, energy demand, and EGU unit operation. The dominant meteorological parameter affecting the energy demand forecast is temperature.

Energy Load-Adjusted EGU Emissions Estimates

Historical power load data from the NYISO archive and temperature observations data from the research data archive at the National Center for Atmospheric Research have been analyzed for statistical relationships between daily power load and average temperature in NY State.

Figure 5 shows a quadratic relationship between ozone season temperature data (May–September) from 2007 to 2009 and the actual power load for the NYISO region aggregated over NY State. The regression model is: power load (MW) = $288.6112x^2 - 2.9463E+4x + 1.1487E+6$ Where, $x = \text{average daily temperature (which ranged from 45 to 81°F)}$ and $R^2 = 0.7554$.

A comparison between the model-predicted power load using the above relationship and the actual power load for 2010 is shown in Figure 6 with an R^2 of 0.8039. A similar comparison for 2011 (not shown) had an R^2 of 0.8113. Since the results indicate reasonable performance of the regression model, the correlations can be employed to support a better forecast. As the range of daily average temperatures during 2007 to 2009 for the model development was up to 81 °F, predictions of power load at temperatures above 81 °F suggest possible over prediction and the potentially greater influence of EGU peaking units.

Although energy load is distributed across ISO regions and across states, energy use within a region does not necessary reflect where the power is generated and thus where emissions occur. If a significant portion of the electric generation to meet load demand occurs outside of the aggregated ISO domains, the relationship between forecasted load and EGU emissions will be more uncertain. In addition, EGU emissions will vary over the years due to emission controls and changes in electric generation capacity and load demand; the latter very likely affecting the operating frequency of peaking units.

Methodologies for Incorporating Real-Time EGU Emissions Estimates in AQFMs

Current analyses indicate that two methodologies look feasible for incorporating real-time EGU emissions estimates in AQFMs. The first approach
The second approach draws from the relationship between temperature–energy load and EGU emissions and is more indirect, but also does not rely on the ISOs real-time energy load forecasts. In this case, forecasted temperatures used to process other emission components in the SMOKE emissions model will be applied to the statistical relationship between previous years’ energy load and emissions data.

considers aggregating (by state) the hourly energy load forecast data (day 2) from the ISOs for pre-processing by the Sparse Matrix Operator Kernel Emissions (SMOKE) processor. The SMOKE preprocessing will involve incremental adjustments of EGU unit emissions at the state level and on a daily average basis, reflecting the statistical relationship between previous years’ energy load and emissions data.
perature has been shown to be a reasonable surro-
gate for energy load, using a direct relationship
together with temperature and EGU emissions is also
feasible. In either case, similar procedures for the
SMOKE preprocessing of the ISO energy load in
relation to emissions would be followed.

Future Challenges and Outlook
AQFMs are being used by air quality managers and
health officials to issue air quality advisories.
Improving the accuracy of air quality forecasts will
translate into providing more precise warnings to
the public. In this article, we presented an example of
possible approaches to refine the characteriza-
tion of emissions from power plants in AQFMs. We
explored relationships between ambient temperature,
energy demand and EGU point source emissions
and suggested methodologies for applying these
relationships to enhance real-time EGU emissions
estimates for use in AQFMs. However, there are
some limitations.

While the relationships presented here are robust,
they were developed based on aggregated emis-
sion sources in NY State, and as such, may be
best suited to improve regional-scale predictions.

Developing unit-specific relationships will be much
more challenging because load forecasts are not
available at that level, and economic and opera-
tional constraints likely are at least as important as
meteorology in determining which unit runs on
which day at which level.

Finally, depending on federal and state reporting
rules, some of the peaking units with relatively
small annual emissions may not be required to
have CEM. Therefore, their annual total emissions
are currently included in the miscellaneous point
source category inventory and no further informa-
tion on their temporal variation is readily available.
Getting a better representation of their temporal
variability may be important for finer scale applica-
tions, but is a challenge that may need to be
addressed in the future.

The potential of an air quality forecast system is its
possible utility as a dynamic air quality manage-
ment tool that can provide information on likely
emission intervention strategies that can avoid air
quality exceedances. Improving the accuracy of the
model predictions through refinements such as
that discussed in this article is an important step
toward achieving that goal.

Improving the accuracy of air quality forecasts will translate into providing more precise warnings to
the public.

References

prediction project: Initial evaluation, status and prospects. In Proceedings of the 11th Joint Conference on the Applications of Air Pollution
4. Otte, T.L.; Pouliot, G.; Plein, J.; Young, J.O.; Schere, K.L.; Wong, D.C.; Lee, P.C.S.; Tsidulko, M.; McQueen, J.T.; Davidson, P.; Mathur, R.; Chuang,
H.Y.; DiMego, G.; Seaman, N.L. Linking theEta Model with the Community Multiscale Air Quality (CMAQ) Modeling System to Build a
7. Doraiswamy, P.; Hogrefe, C.; Hao, W.; Civerolo, K., Wu, J.Y.; Sistla, G.A Retrospective Comparison of Model-Based Forecasted PM$_{2.5}$ Concentra-
9. 2007 Regional Emissions Inventory: Mid-Atlantic Regional Air Management Association, available online at www.marama.org/technicalcen-
10. Analysis of 2007 Emissions from Power Plants and Other Large Combustion Sources in the Mid-Atlantic and Northeastern United States; Technical
Report for Mid-Atlantic/Northeast Visibility Union; Mid-Atlantic Regional Air Management Associations, March 2011, available online at
on Air Quality Forecasts. Presented at the 9th Annual CMAS Conference, Chapel Hill, NC, October 11–13, 2010.