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Fires and Air
Past, 

Wildfires threaten our lives not only through their
destructive power, but also with their significant 
impact on air quality.1 Local- and regional-scale 
impacts of fires on atmospheric composition are
apparent in the concentrations of trace gases and
aerosols, including carbon monoxide, nitrogen 
oxides, ozone, black carbon, and particulate matter.
Emissions from fires impair visibility and adversely
affect public health. Poor visibility has led to fatal
highway accidents, and several epidemiological
analyses have identified statistically significant 
associations between fire-related smoke and respi-
ratory- and asthma-related hospital admissions.2

In the United States, a considerable fraction of air
pollution can be attributed to fire-related emissions.
At present, wildfires largely drive the variability in
summertime organic carbon aerosol concentra-
tions in the western United States.3 Though less
common, emissions from wildfires in the eastern
United States, such as the Florida-Georgia fires of

2007 and North Carolina peat fires of 2008, can
endanger the lives of larger populations in urban
areas. In addition, wildfire activity may strengthen
under a changing climate. Studies suggest that a
warmer and drier climate increase the area burned
by wildfires and their severity.4-6 The response of
plants and vegetation to climate is not necessarily
considered in these studies, but fuel loads may also
increase in the future leading to more intense fires
with larger emissions. Considerable increases to 
organic and elemental carbon aerosol concentrations
can be expected to occur by mid-century as fire-
related emissions intensify.7

Controlled fires, also known as prescribed burns,
can also be a major contributor to air pollution.8
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Prescribed burns are frequently used as a land-
management strategy and have proven to be 
effective toward accomplishing different objectives,
such as habitat restoration, wildfire prevention, 
endangered species protection, site preparation for
seeding and planting, and disease control. In the
past decade, more than 30% of the area burned
by fires within the contiguous United States corre-
sponded to prescribed burns.9

In the southeastern United States, where pre-
scribed burning is a preferred method of land
management, more than 8 million acres of land
are treated by fire every year,10 and this amount
could easily double if there were no limiting air
quality concerns.11 Source apportionment modeling
of fine particulate matter (PM2.5) measurements
from 24 Speciation Trend Network sites in the south-
eastern United States suggests that prescribed
burning may be contributing more than 30% of

the annual PM2.5 mass.12 Recent studies show that
prescribed burning can significantly impact air
quality in neighboring urban communities, con-
tributing significantly not just to PM2.5, but ozone
as well.13-15 For example, on February 28, 2007,
due to a prescribed burn, 1-hr PM2.5 concentrations
at several monitors in Atlanta, GA, reached 145 μg
m-3 (the NAAQS for 24-hr PM2.5 is 35 μg m-3), 
increasing by more than 100 μg m-3 in just two
hours. In addition, 1-hr average ozone concentra-
tions increased markedly from 63 parts per billion
(ppb) to 95 ppb at one of the monitors.16

The concern over fires in air quality planning 
efforts is expected to grow as air quality standards
become more stringent and emissions from other
anthropogenic sources are better controlled. 
Because prescribed burn impacts on air quality can
be exacerbated or diluted, depending on ambient
meteorological conditions and interactions with
other emissions in and around large metropolitan
areas, integrating air quality forecasting in prescribed
burn management can avoid creating serious air
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managers in planning prescribed burns, such as
VSMOKE and the Simple Approach Smoke Esti-
mation Model.21,22 Puff models, which simulate fire
emissions as a series of continuously emitted
parcels, can be used to model dispersion under
space- and time-varying meteorological fields over
detailed terrain. Calpuff, a widely used puff model,
has been applied to simulate the transport of fire
plumes.23,24 The Hybrid Single Particle Lagrangian
Integrated Trajectory Model (HYSPLIT) is a com-
ponent of the Smoke Forecasting System used by
the U.S. National Weather Service to produce daily
smoke forecasts.25 Other Lagrangian particle mod-
els, such as FLEXPART, have been used to simulate
biomass burning plumes.26,27 Daysmoke, another
member of the Lagrangian family, has been specif-
ically developed for modeling the dispersion and
transport of prescribed burn plumes.28

All these models lack the chemical detail that would
be needed to predict the air quality impacts of fires,
particularly the formation of secondary pollutants
such as ozone and a potentially large fraction of 
organic aerosols. Some do not include any repre-
sentation of chemistry (e.g., VSMOKE, Daysmoke)
and simply treat the fire plume as a mixture of inert
gases or particles. Others may have characterizations
of chemical reactions in the atmosphere, but 
generally in a very simplistic way (e.g., Calpuff and
HYSPLIT). This is not surprising given the fact that
these models are used in forecasts mainly concerned
with primary smoke impacts and not secondary air
pollution or the interactions with emissions from
other sources over large geographic regions.

An alternative approach to simulating the transport
and transformation of fire emissions is to use 
Eulerian chemical transport models (CTMs). These
models use weather forecasts, emissions estimates,
and mathematical representations of atmospheric
processes to predict the evolution of pollutant con-
centrations over large geographic regions. Today,
CTMs are extensively applied in North America
and Europe to design environmental policy, gen-
erate air quality forecasts, and study atmospheric
physics and chemistry.29 In contrast to Lagrangian
dispersion models, Eulerian CTMs include state-
of-the science representations of chemical and
physical atmospheric transformations.

pollution incidents. Further, a dynamic air quality
management approach based on forecasting would
not only mitigate the undesirable impacts of fire
emissions, but may also increase burning capacity
by allowing additional emissions when conditions
are favorable. However, such an approach would
require more accurate predictive tools for forecast-
ing fire emissions and their air quality impacts.

Models for Forecasting
Weather forecasting is the first step in predicting
the impacts of fires. Since numerical weather pre-
diction models are relatively well developed, we will
not discuss them here. Using the weather forecast
simply as an input to fire impact simulations is a
common approach and is appropriate, as long as
the fire does not interfere with the weather. How-
ever, some fire plumes are known to create their
own local weather. Models currently under devel-
opment to capture the feedback of fire plumes on
weather17 should be considered for fire impact
forecasting in the future.

Estimation of fire emissions usually consists of 
approximating the amounts of different types of
fuels consumed and multiplying them with emission
factors derived from field studies or laboratory 
experiments measuring the amounts of various
pollutants emitted per unit mass of consumed
fuels. The fuel consumption estimation typically 
begins by characterizing the fuel loads. For wild-
fires, fuel loads can be obtained from National Fire
Danger Rating System (NFDRS) or similar maps.
For prescribed burns, fuels can be surveyed and
matched with the closest depiction in a catalog
where each photograph has corresponding fuel
loads.18 A consumption model can then be used
to calculate the fractions of fuels that would be con-
sumed under predicted fire conditions. Several fire
emission modeling tools are available through the
BlueSky framework,19 including the consumption
model CONSUME,20 which considers fuel loads,
fuel moistures, and intensity of the fire to calculate
fuel consumptions. BlueSky also compiles emission
factors from various sources.

A variety of models have been developed and
used for predicting the dispersion and transport of
fire-related emissions. Simple Gaussian plume
models have been developed to assist land 
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Previous applications of Eulerian CTMs for pre-
dicting the impacts of wildland fires have achieved
greater understanding of the atmospheric processes
affecting fire-related emissions.30,31 However, there
are limitations associated with the current genera-
tion of models because of their relatively coarse
resolution. Eulerian CTMs operate by dividing an
atmospheric domain into a number of discrete cells
and simulating atmospheric processes for every
cell. Computational requirements typically restrict
grid resolution in regional-scale applications to a
few kilometers. Emissions are immediately diluted
upon injection into a grid cell, losing potentially 
important information about the subgrid-scale
structure of a plume. As pollutants are dispersed,
coarse grid resolution causes artificial diffusion by
uniformly mixing pollutants within each cell. This
leads to a loss of accuracy, especially in the modeling
of nonlinear chemical transformations. Processes
occurring at scales smaller than those captured by
the grid resolution must be parameterized in
CTMs. Some CTMs offer subgrid-scale plume
treatments for emissions from industrial stacks, but
not for fire-related emissions.

The vertical distribution of fire emissions is an 
important component of air quality simulations
centered on smoke transport. Theoretical or empir-
ical plume rise representations, with varying levels
of complexity, are often used to approximate 
vertical plume structures. The fraction of fire emis-
sions penetrating into the free troposphere is a key

model parameter. Pollutant concentrations predicted
by CTMs are highly sensitive to the altitude at
which fire emissions are injected relative to the
planetary boundary layer (PBL).32 For instance, 
Figure 1 shows a prescribed burn smoke plume
simulated by the Community Multiscale Air Quality
(CMAQ) model,33 an Eulerian CTM, using different
vertical distribution profiles. The vertical profile that
retains flaming-stage fire emissions within the PBL
(Figure 1a) produces a concentrated smoke plume.
In contrast, allocating the majority of fire emissions
into the free troposphere leads to a weaker and
highly diffused plume (Figure 1b). The air quality
impacts predicted by the model at downwind 
receptors in each case differ significantly.

Air quality forecasting requires emission forecasts
as one of its inputs. One approach to projecting
fire emissions to the future has been to develop a
typical fire emissions inventory by averaging 
several years’ fires.34 The rationale is that since the
locations, frequencies, and strengths of future fires
cannot be predicted accurately, a typical year’s fires
would be a reasonable representation of future
years’ fires. In this manner, the probability of intro-
ducing large uncertainties by using a single year’s
high or low fire activity is reduced. In the past, this
approach has been used by the U.S. Environmental
Protection Agency (EPA) and regional planning 
organizations (RPOs) for regulatory purposes, and
adopted by operational air quality forecasting 
systems such as Hi-Res.35

Figure 1. Prescribed burn
smoke plume, shown as a
three-dimensional iso-
surface defined by PM2.5

concentrations equal to 
35 μg m-3, simulated by
CMAQ using vertical 
distribution profiles that 
allocate flaming emissions
mostly (a) within the PBL and
(b) into the free troposphere.
Ground-level and lateral
boundary PM2.5 concentra-
tions are also shown. 
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As an example of the typical year approach, the
Fire Averaging Tool (FAT) developed by EPA gen-
erates day-specific fire emissions for each county
by taking the rolling average over a specified 
period of daily fire emissions in that county for the
years being included in the average. For example,
if the selected averaging period is 29 days (+/- 14
days) and the years included are 2003–2009, then
for July 15 the tool averages all the fires in that
county from July 1 to July 29 for 2003–2009. 
Figure 2 illustrates how a 29-day averaging period
leads to emissions smoother than those produced

by 15- or 7-day averaging periods and how the
use of multi-year data greatly reduced day-to-day
variability compared to the actual 2007 point fire
inventory.34 FAT also smoothed the fires spatially
by averaging multiple years of fire emissions over
each county. All these effects of averaging ultimately
lead to a typical year with more frequent but less
intense fires over larger spans.

The Hi-Res operational air quality forecasting 
system35,36 used a typical year inventory developed
by averaging fire emissions of years 1999–2003 in
its 2007–2008 forecasting.37 Figure 3 shows how
using typical fire emissions in the Hi-Res system
caused forecasted PM2.5 concentrations to deviate
from observations in Atlanta. Due to CMAQ’s 
tendency to underestimate organic carbon con-
centrations, the forecasted summertime PM2.5

concentrations were low compared to the obser-
vations. In May 2007, the forecasts were extremely
low compared to observations, having missed 
several hits by smoke plumes from the Florida-
Georgia fires absent in the typical inventory. During
winter, the frequency of fires was larger in the 
typical inventory than in reality, leading to an over-
prediction of PM2.5 concentrations on most days.
These results reveal that it is not appropriate for an
operational air quality forecasting system to rely on
typical year fire emissions averaged from historical
multi-year data. 

Satellite Products
In recent years, satellites have been used for fire
detection, and satellite fire products allow for deri-
vation of biomass fire emissions. The Satellite 
Mapping Automated Reanalysis Tool for Fire 
Incident Reconciliation (SMARTFIRE) system38

provides a satellite-based fire emissions inventory.
SMARTFIRE uses the National Oceanic and 
Atmospheric Administration (NOAA) Hazard Map-
ping System fire location information combined
with the Fuel Characteristic Classification System
and CONSUME to estimate fire emissions from
wildfires and prescribed burns on a daily basis. The
SMARTFIRE emissions inventory is now being
widely used by the EPA and RPOs for their regu-
latory modeling efforts. However, for reasons
stated above, such historical fire emissions inven-
tories are inadequate for operational air quality
forecasting.

Figure 2. Typical fire emis-
sions for Southeast United
States generated by Fire 
Averaging Tool using 7-, 
15-, and 29-day averaging
with the 2003–2009 
inventories and actual 
fire emissions from the
2007 inventory.34

Figure 3. PM2.5 forecasts and observations in Atlanta, GA, between May 2007 and April 2008. 

Note: Max and min represent the maximum and minimum observed or forecasted daily average
PM2.5 concentrations at the monitoring sites in the area. 
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There are also near-real-time biomass burning
emissions products derived from satellites such as
the Fire Inventory of NCAR (FINN)39 and Global
Biomass Burning Emission Product from geosta-
tionary satellites (GBBEP-Geo).40 FINN uses active
fire detections from the Moderate Resolution 
Imaging Spectroradiometer’s (MODIS) Thermal
Anomalies Product and the MODIS Collection 5
Land Cover Type product, together with estimated
fuel consumptions and emission factors to obtain
daily open burning emissions estimates at approx-
imately 1-km spatial resolution.

GBBEP-Geo produces hourly biomass burning
emissions using satellite-derived fire radiative
power (FRP) for individual fire pixels at approxi-
mately 4-km resolution. FRP is retrieved using the
wildfire automated biomass burning algorithm
from a network of multiple geostationary satellites,
including NOAA’s two Geostationary Operational
Environmental Satellites (GOES), the European
Meteosat second-generation satellites, and the
Multifunctional Transport Satellite operated by the
Japan Meteorological Agency. FRP is a function of

area burned, fuel loading, and combustion 
efficiency that provides a means to directly derive
biomass consumption from satellite data.41

Both the FINN and GBBEP-Geo products could
potentially be used in operational air quality fore-
casting to track emissions from large wildfires and
predict their near-future trends. In addition, aerosol
optical depth (AOD) available in near-real-time
from MODIS and GOES, as well as carbon
monoxide concentrations from Measurements of
Pollution in the Troposphere (MOPITT) can be 
assimilated into modeled concentration fields to
more accurately forecast fire impacts.

A recent comparison of satellite-based biomass
burning emissions products revealed inconsistencies
between the different methods used with various
satellite instruments and large discrepancies in the
emissions estimates.42 Whenever possible, satellite-
based biomass burning emissions products should
be calibrated using data from alternative sources.
For example, SMARTFIRE uses ground-based 
incident reports to reconcile its satellite fire detections.

The Drive to Site Closure: Critical Sustainability Concerns and Key Technical Issues

The Air & Waste Management Association is accepting abstracts for the 
 to be held 

in Cherry Hill, New Jersey (near Philadelphia) on September 10-11, 2014.

This specialty conference (formerly titled Vapor Intrusion Conference) will 
bring together internationally recognized scientists, engineers, regulators 
and attorneys with experience in getting sites to closure and the critical 
sustainability and technical issues that need to be considered.

Abstracts are being sought which demonstrate innovative, scientific 
approaches for site investigation and remediation, including those with a 
vapor intrusion component. Abstracts should reflect original work that 
has not previously been published or presented.

Abstracts of 300 words or less must be 
submitted by December 16, 2013 to 
siteclosure@awma.org.

2349 Marlton Pike W
Cherry Hill, NJ 08002
Phone: (856) 665-6666
Room rate: $112 
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FRP used in GBBEP-Geo as a proxy for the rate of
biomass consumption is derived from limited 
experiments.43 Its relation to biomass consumption
needs to be more intensively calibrated.44 Satellite
products also can be evaluated using various
ground-based emission inventories such as the
U.S. National Wildfire Emission Inventory.45

Aircraft measurements taken in fire plumes can be
used as another source of independent data to 
calibrate satellite retrievals and reconcile with
ground-based emissions data. To illustrate this 
concept, emissions from a prescribed burn were
estimated using both ground-based information
and satellite observations. The ground-based 
information was fed into a series of models for fuel
loads, fuel consumptions, and emissions, as in the
BlueSky framework. The satellite-based emissions

estimate was derived from GBBEP.45 In this case,
the ground-based estimate is significantly larger
than the satellite-based emissions estimate (Figure
4a). The temporal profiles were also significantly
different: satellite-based emissions ramped up,
reached their peak toward the middle of the burn,
and then tapered off, while the ground-based
emissions were more level during the flaming
phase followed by two hours of smoldering.

The burn was then simulated using both sets of
emission estimates and meteorological parameters
predicted by a numerical weather prediction model
as inputs to the Daysmoke plume rise and disper-
sion model. During this burn, an aircraft tracked
the smoke plume and measured carbon dioxide
and light scattering along with meteorological 
parameters.46 Concentrations of smoke predicted
by using both ground- and satellite-based emissions
estimates were compared along the trajectory of
the aircraft to corresponding measurements. This
type of comparison is one of the most challenging
evaluations for a model where the predictions are
paired with measurements both in space and time.
While the concentration peaks were generally 
synchronized, there were large differences be-
tween the magnitudes of modeled and measured
maxima (Figure 4b).

Since the differences from the measurements are
larger than the differences between the two sets of
model-predicted concentrations, it is not possible
to determine which emissions estimate is more 
accurate for this case. A comparison of predicted
winds to those measured by the aircraft revealed
differences both in speed and direction that could
easily lead Daysmoke to divert the smoke plume
from its observed trajectory. Since modeled con-
centrations can be very sensitive to uncertainties in
predicted wind fields, a less strict pairing of 
predicted and measured concentrations, for 
example one with pairing in time but not in space,
is recommended.

Toward a Better Fire Impact 
Forecasting System
Once properly calibrated, near-real-time biomass
burning emissions products derived from satellites
may be beneficial for air quality forecasting. For 
example, when a large wildfire is detected by

Figure 4. (a) Ground- and
satellite-based emission 
estimates for a prescribed
burn conducted on November
17, 2009, near Santa Barbara,
CA, over 80 ha of land 
covered with chaparral; 
(b) downwind PM2.5 concen-
trations predicted by using
those estimates in
Daysmoke and derived from
light scattering measure-
ments by aircraft.
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satellite, its emissions can be input to the next forecast
cycle and Eulerian CTMs with sufficiently high res-
olution can track those emissions. However, these
satellite products are not as useful with prescribed
burns for several reasons. First, prescribed burns
are of short duration; they may be ignited and 
extinguished between satellite scans and go com-
pletely undetected. Second, their radiative power
is much weaker than large wildfires, making them
more difficult to detect and estimating their emis-
sions more prone to uncertainties. Finally, it is 
difficult to incorporate prescribed burns detected
by satellites into the forecast because of their short
duration. However, there are some applications like
the forecasting of the extremely dangerous super-
fog47 where the tracking of prescribed burn emis-
sions overnight would be beneficial.

While the use of satellite products is not a current
option for forecasting the air quality impacts of 
prescribed burns, the use of typical fire emissions
can lead to poor air quality forecasts, as shown
above. What is needed is a better way of estimating
prescribed burn emissions. Since weather plays an
important role in the decision of the prescribed
burner, weather forecasts can be used in predicting
prescribed burning activity, at least on a burn/no-
burn decision level. One can also assume that if
the conditions are perfect, there would be more
acres burned. Burners are primarily concerned with
the conditions of the fuel and soil: the fuel must be
dry enough to burn, but the soil should be damp
enough to protect trees from the burn. Wind
speed, wind direction, and atmospheric stability are
other factors that would be considered to conduct
the burn safely, effectively, and without hitting any
sensitive targets with smoke. Precipitation, temper-
ature, humidity, and winds are the primary weather
parameters determining the fuel and soil moistures.
These can be combined with other factors, such as
the fuel/soil type, to predict fuel/soil moisture. 
Alternatively, simple rule-based decision trees can
be used to determine whether the prescribed
burner would attempt to burn or not. We will illus-
trate this with the following example.

Forecasting Prescribed Burn Emissions
Figure 5 shows the acreage of the burns permit-
ted in northern Bryan County, GA, for each day in
March 2010. Bryan County is home to Ft. Stewart,

a large training base for the U.S. Army. Also shown
in Figure 5 is the daily precipitation measured at
Ft. Stewart. In Georgia, burning permits are 
requested and granted by telephone or online, 
typically on the morning of the burn. Therefore,
the area permitted to be burned is a good indica-
tion of the intent for burning on that day. Note that
no burns were attempted on a rainy day or the 
following day. The large rain event on March 11 
(2 inches) is followed by three days of inactivity.
Burn/no-burn decisions are made based on the
rain forecast, not actual precipitation. On days with
no precipitation, a high probability of rain in the
forecast could have deterred the prescribed burners.
For example, March 26 could be one of those
days. However, it is more likely that high winds in
the forecast influenced the decision against the
burns as the maximum wind speed recorded at Ft.
Stewart was 22 mph on that day. Another deterrent
may have been a westerly wind forecast, which
could have put highly populated areas to the east
in Chatham County and Savannah at risk of smoke.

The next challenge in forecasting prescribed burn
emissions is to predict the location and size of the
burns. One approach is to keep an inventory of the
managed lands, their frequency of treatment, and
the last time they were burned. The Georgia
Forestry Commission (GFC) electronically tracks all

Figure 5. Daily maximum/
minimum temperatures and
relative humidities, maximum
wind speed, and 1-hr 
accumulated precipitation
(top to bottom) recorded at
Ft. Steward and total areas
of land permitted for 
prescribed burning in 
northern Bryan County, GA,
in March 2010.
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burn permits issued since 2005. Databases such
as this one can be mined to identify all burners, 
analyze their burning patterns, and identify their
burning frequency and last burning year. Burners
whose burning cycles intersect with the current
year can be put in a “likely burners” list. For example,
a plot on a three-year rotation that was last treated
three years ago is likely to be burned this year. At
the start of the burning season, it can be assumed
that all likely burners would burn over a typical
number of days with favorable weather conditions.

The burning season in Georgia is limited to 
October 1 through April 30 owing to a burning
ban during the ozone season (May 1 through Sep-
tember 30). Suppose, on average, there are 20
days favorable for burning in a season. Then, for
forecasting purposes, a randomly selected 1/20 of
the likely burners could be assumed to be burning
on the first occurrence of favorable weather condi-
tions. As the season progresses, the list of likely
burners can be updated by dropping those who
have already burned and adjusting the number of
average burning days based on the days remaining
in the season. If the season has been extremely wet
thus far, it can be assumed that a larger than average
fraction of the burners would be burning on the
next chance they get. The GFC database also 
describes the purpose of the burn. Burns may be
conducted early or later in the season, depending
on the intent. Burns aimed at site preparation are
conducted in early fall, while silviculture burns are
conducted at specific times during the growing
season. Burns aimed at hazard reduction may be
scheduled later in the season. After burners are
given priority according to their objectives, the daily
allocation can be filled by randomly drawing from
the pool of remaining likely burners.

The next step is to estimate prescribed burn emis-
sions from the selected burn plots. The BlueSky
modeling framework can be used for this purpose.
The most recent NFDRS maps or fuel information
derived from satellites can be used to determine
the fuel loads. In the future, permit databases like
GFC’s can be expanded with information on the
stand, such as its composition, age, and condition.
This information can then be used in vegetation
dynamics models48 to estimate the changes in fuel
loads over time. Fuel consumption can be estimated

using CONSUME. Finally, emission factors from a
recently compiled nationwide database49 or the
Fire Emission Production Simulator50 can be 
applied to the amount of fuels consumed in order
to estimate total emissions.

The improved forecast can be used as part of the
prescribed burn permitting system for dynamic air
quality management. The benefit of such a system
is that instead of a blanket burning ban, such as
the one imposed in Georgia during the ozone 
season, burns could be banned only on days when
it is imminent that air quality would not meet the
standards. Alternatively, burns can be selectively 
allowed on days when air quality standards likely
would be met. The modeling technology exists for
calculating the increment of pollutant concentra-
tions at downwind receptors due to emissions from
specific sources.51 It is feasible to use this technology
to discern fires from other emissions sources, such
as power plants, industries, and transportation, and
forecast the amount of fire emissions that can be
allowed without exceeding air quality standards for
a given day’s meteorological capacity to assimilate
air pollutants.

The allowable amount of fire emissions can be
turned into more useful information for air quality
conscious prescribed burn management, such as
locations and sizes of burns that can be permitted.
To achieve this, the inverse of the emission estima-
tion model described above is needed. The inverse
model would start with the emissions and calculate
the amount of fuels that would lead to those emis-
sions when consumed by fire. The calculation can
be performed on a district- or county-level spatial
resolution. The list of likely-to-be-burned plots can
then be searched by looking at their estimated fuel
loads to fill the allowable emission quotas for each
county. Finally, the land managers of the selected
plots can be called upon to burn on a given day.
Such a dynamic system can significantly increase
the capacity of land management by prescribed
burns, while also maintaining acceptable air quality. 

Summary
Wildfires are intensifying and increasing in 
frequency as a result of global climate change. At
the same time, dependence on prescribed burns
is growing both for ecosystem management and

A recent 

comparison of

satellite-based 

biomass burning

emissions products

revealed inconsis-

tencies between

the different 

methods used with

various satellite 

instruments and

large discrepancies

in the emissions

estimates.
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hazard reduction purposes. Meanwhile, air quality
standards are tightening and other emission sources
such as electricity generation and transportation are
being heavily controlled. These dynamics will soon
leave fire emissions as the major source of air 
pollution in many areas of the United States. The
increasing demand for prescribed burning, combined
with increased air quality pressure due to tighter
regulatory constraints, necessitates management
approaches that require significantly improved fire
impact forecasting capability.

Recently, there has been a notable increase in the
use of Eulerian CTMs for air quality impact fore-
casting. Despite significant strides in model devel-
opment, limitations remain. One limitation is the
heavy computational needs imposed by high grid
resolutions needed to adequately track fire plumes.

Another limitation is the lack of rapid fire emission
forecasting capability. Typical fire emissions used in
regulatory modeling are too inaccurate for reliable
air quality forecasting. The averaging processes 
involved in developing typical fire inventories
spread the fires in space and increase their frequency
without considering the weather conditions.

Satellite retrievals, after calibration with ground-
based data, can be used to estimate biomass burning
emissions for forecasting the impacts of wildfires.
Prescribed burns, on the other hand, are of short
duration and smaller size, which makes them more
difficult to detect with satellites. A new approach is
needed to forecast the impacts of prescribed burns.
One is proposed here to forecast burn activity
based on weather and past burning patterns in
well-managed tracts. em
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